氧化物界面的二维超导
超导是物理学中最迷人的宏观量子现象之一,室温超导更被称作是凝聚态物理研究的皇冠。近年来,随着薄膜生长技术的日渐完善,制备原子级平整的氧化物薄膜异质界面成为可能。氧化物界面超导也为探索高温超导机理和探寻更高的超导转变温度提供了一个全新的平台。我们着力于构筑精细的氧化物界面,探索界面二维超导丰富的物理性质与其潜在应用价值。
Superconductivity represents one of the most fascinating macroscopic quantum phenomena in physics, with room-temperature superconductivity often hailed as the crown jewel of condensed matter physics research.In recent years, advancements in thin-film growth techniques have enabled the fabrication of oxide thin-film heterostructures with atomically smooth interfaces. These oxide interface superconductors provide a novel platform for investigating the mechanisms of high-temperature superconductivity and seeking higher superconducting transition temperatures.We are dedicated to constructing precisely engineered oxide interfaces to explore the rich physical properties and potential application value of two-dimensional superconductivity at these interfaces.
氧化物界面光电响应
高质量的氧化物界面材料蕴含着丰富的物理机理与新奇物理现象。相比于传统硅基半导体材料,过渡金属氧化物具有更丰富的物理性能和更灵敏的外场响应,有望用于构建下一代信息存储和逻辑器件。
High-quality oxide interface materials harbor diverse physical mechanisms and novel phenomena. Compared with traditional silicon-based semiconductors, transition metal oxides exhibit richer physical properties and more sensitive responses to external fields, making them promising candidates for next-generation information storage and logic devices.
新型磁存储器件
对于氧化物界面来说,“界面即是器件”,其应用源于对界面处电子和磁性结构的控制。本课题组不断探索氧化物异质界面的丰富物理性质,并基于此构筑多种低能耗、多功能的新型器件。
For oxide interfaces, 'the interface itself functions as the device'—their applications stem from precise control over electronic and magnetic structures at the interface. Our research group relentlessly explores the rich physical properties of oxide heterostructures and leverages them to construct diverse energy-efficient, multifunctional next-generation devices.
低维材料类脑器件
从传统材料到量子材料,从体材料到低维材料,利用新材料体系构建人工突触、神经元乃至神经网络的研究方兴未艾。我们乐于挑战与创新,探索低维材料应用新路径。
Research on constructing artificial synapses, neurons, and even neural networks using novel material systems—spanning from traditional to quantum materials, and from bulk to low-dimensional architectures—is burgeoning.We embrace challenges and innovation to pioneer new pathways for low-dimensional material applications.